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IMPLEMENTATION OF NON-LINEAR ESTIMATORS USING MONOSPLINE

A. H. Wang

R. L. Klein

Department of Electrical Engineering
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Lawrence, Kansas 66045
913-864-4615

Abstract

This paper presents a method for the real-
ization of ncn-linear estimators based on spline
interpolation. The difference of a monomial and
its interpolating spline forms a monospline and
then a quadrature formula is induced. When the
knots of the monospline at which the conditional
density is discretized are allowed to vary, a
class of optimal quadrature formulas is obtained.
To find the monospline with optimal knots a set
of non~linear algebraic equations must be solved.
If the symmetry property of the monospline is
applied, the order of the non~linear equations
can be reduced by about one-half. An iteration
scheme of Newton type is introduced to solve
the monospline. The quadrature formula asso-
ciated with this monospline has the so-called
positivity property which is essential in the
practical implementation of non-linear recur-
sive estimators.

1. Introduction

The implementation problem for non-linear
estimators of the state in a discrete time dyna-
mical system employs a recursive algorithm
arising from Bayes Law. Many numerical ap-
proaches for this implementation problem have
been developed during the past few years. These
inciude curve fitting the conditional density
{1}[2]) and the quadrature approximation to the
necezsary integrations [3]{4]{5]. The essential
step in cotaining the conditional density of the
state, given the observations, is integration.

In this paper, a method using quadrature
formulas related to monosplines with optimal
knots is discussed.

Consider a discrete time dynamical system
given by
n
5k+l " L(gk) + ¥ X ¥y € R (1)
The results presented in this paper were ob-
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The noise sequences are assumed to be independent
Guassian random vectors with zero mean. If the
p.d.f. of the initial state is assumed to be
known, the conditional density function of the
state, given the observations, can be computed
by the following recursive equations [6]

Hew eR (2)

uly lx et 1Y, )

°(x—k[Yk) - Juf(zszk)prik[yk—l)dik | (3)
and
plx, +1Y,) = Jf(§k+1lzk)(5lek)d§k (4)

where ¢ is filtering density, u is measurement
density, t 1s transition density and p is pre-
diction density. This paper attempts to approxi-
mate the necessary integrations in (3) and (4)

by using the quadrature formula derived from
monospline.

2, Spline Interpolation, Monosplines
and Corresponding Ouadrature Formulas

Let s(x) be a spline function of degree
2m-1 with distinct knots x,, X,y « « ., X_ 1in
[-1,1) and k-~fold knots at -1 and 1, where
O<k<m<n+2k. Then if a monomial of degree 2m,
xZm/ (2m)!, is interpolated by s(x) in [~1,1],
the difference between these two functions be-~
comes a monospline

2m
H(x) = %ESTT - s(x)

me 2m xi-l
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H(i)(il) =0 i o) SRR 2 | (6)

H(mﬂ))(ﬁl) =0 p=0, 1, .s., m-k-1

L C)) o
Let K(x) = H '(x) = =5 - 8" (x) (7)
Then the orthogonality property of spline inter-

polation implies that [7]

I 2
[ [K(x)]® = minimum (8)
-1

Since K(x)sCm—z, for any function f(x)ch(—l,l],
we can employ integration by parts to get

1 n
J f(x)dx = £ A f(x.)
=% j=1 33
k-1
+ %

(Bif(”(-l) + Dif(i)(+l)l
1=0

e
+(~1)"’[ K(x)E ™ (x)dx (9)
o

where (Aj}' (Bi} and (Di} are the coefficients

of the derived quadrature formula which relate
to K(x) by

= (m-1) _ L) .
A= K (xj~) K (Xj+) B

¥=1, 2, ¢ov5 N (10)
B, = (DD gm0, 1, L, k1 D

D, = (—1)1x(“"i'1)(+1) =0, 1, ooy k=1 (12)

K(x) is then a kernel of the derived quadrature
formula which has remainder

1
RE = (~1)" J k)£ ™ (x)dx (13)

For the case 2<m, 0<k<m<2u+2k aund {x,} are
double knots, a set of additional conditiJn is
induced,

H’(xj) =0 321y 25 coex M (14)
n
and (9) has additional term & ij’(xj) added to
3=1
its right hand side. Ej is given by
- g(™2) _g(m=2)
Ej K (xj+) K (xj-) (15)

=1, 2, vesy 01

If the knots are allowed to vary, a set of
optimal knots can be obtained which cause the
£: 's to vanish. This induces so~called optimal
p;operty to the Ouadrature Formulas (9), [8].

3. Numerical Solution for the Monospline
with Optimal Knots

Substituting the conditions (6) and (14)
into (5), 2m+2n non-linear algebraic equations
are obtained in the 2m+2n unknowns, {aj}, {Bj)
and {xj}. It can be shown [8] that a symmetry
property of the monospline can be employed to
reduce the number of equations and unknowns to
m+n when n is even or m+n+l when n is odd. This
eliminates even terms of {aji}.

T
Let x = [x) x, ... xq] (16)
and 3 = (o) 5y e Ggu 148108y, ennsB017 (1)

where 9=n/2 wvhen n is even or 4=n+l1/2 when n is
odd. Then the conditions (6) and (14) induce the
following equations

A(X)y = z(x) A: (m+q)x(m+q) (18)

and B(x)y = w(x) B: 9x(m+q) (19)

Let n represent all the unknowns

v
a= [il (20)
and combine (18) and (19). We get

= MY -z
£ [B(i)l"i(’_‘)] 0 @

The Jacobian of (21) is computed by taking par-
tial derivatives of ﬁ(ﬁ) with respect to n.
Since (21) has a unique solution, the inverse of
this Jacobian exists. Partitioning the inverse
Jacobian, we get

.
7t - & EI (22)
B F

where AT: (m+q)x (m+q) , BI: gx (m+q), EI: (m+q)xq
and Fl: gxq.

Since (18) is linear in y if x is given,
(21) can be simplified by computing y from x.
Then we get

0
£ = [&(i)] D)

where

-

g(x) = B(g)Ayl(z)g(g)-z(g) (24)

Then a modified Newton's iteration equation
(9) can be used to obtain x,
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the evolving density is multimodal,

In the realization of the evolution of
conditional densities, the concepts of floating
grid and coordinate rotation are employed to
efficiently represent the density functions [5].
The updating algorithm is designed so that the
computational efficiencies of parallelism can be
exploited for real time applications.

5. Conclusion

An approach to problems of non-linear
estimation implementation using quadratures
which are derived from monosplines with optimal
knots is given. The quality of the approximation
depends on the degree of monospline, the number
of knots and the truncation factor. The approx-—
imation error 1is reduced by efficiently repre-
senting the density function in digital form.

The parameters in the optimal quadrature
formulas are computed a priori, off line using
simplifications of non-linear equations which
specify them. Specifically, the separation of
linear and non-linear parameters leads to a
powerful and accurate iteration scheme to
obtain the monospline with optimal knots.
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